笔趣阁 > 其他类型 > 离语 > 第336章 好

第336章 好

    2.3 检索增强生成技术

    RAG(Retrieval-Augmented Generation)技术是一种结合了信息检索(Retrieval)和文本生

    成(Generation)的自然语言处理(NLp)方法。核心思想是将传统的检索技术与现代的自然语言

    生成技术相结合,以提高文本生成的准确性和相关性。它旨在通过从外部知识库中检索相关信息来

    辅助大型语言模型(如 Gpt 系列)生成更准确、可靠的回答。

    在 RAG 技术中,整个过程主要分为三个步骤如图 2.2 所示:索引( Indexing)、检索

    (Retrieval)和生成(Generation)。首先,索引步骤是将大量的文档或数据集合进行预处理,将

    其分割成较小的块(chunk)并进行编码,然后存储在向量数据库中。这个过程的关键在于将非结

    构化的文本数据转化为结构化的向量表示,以便于后续的检索和生成步骤。接下来是检索步骤,它

    根据输入的查询或问题,从向量数据库中检索出与查询最相关的前 k 个 chunk。这一步依赖于高效

    的语义相似度计算方法,以确保检索到的 chunk 与查询具有高度的相关性。最后是生成步骤,它将

    原始查询和检索到的 chunk 一起输入到预训练的 transformer 模型(如 Gpt 或 bERt)中,生成最

    终的答案或文本。这个模型结合了原始查询的语义信息和检索到的相关上下文,以生成准确、连贯

    且相关的文本。

    RAG 的概念和初步实现是由 douwe Kiela、patrick Lewis 和 Ethan perez 等人在 2020 年首次

    提出的。他们在论文《Retrieval-augmented generation for knowledge-intensive nlp tasks》

    中详细介绍了 RAG 的原理和应用,随后谷歌等搜索引擎公司已经开始探索如何将 RAG 技术应用到搜

    索结果的生成中,以提高搜索结果的准确性和相关性。在医疗领域,RAG 技术可以帮助医生快速检

    索医学知识,生成准确的诊断建议和治疗方案。

    2.4 文本相似度计算

    文本相似度计算是自然语言处理(NLp)领域的一个重要研究方向,它旨在衡量两个或多个文

    本之间的相似程度。文本相似度计算的原理基于两个主要概念:共性和差异。共性指的是两个文本

    之间共同拥有的信息或特征,而差异则是指它们之间的不同之处。当两个文本的共性越大、差异越

    小,它们之间的相似度就越高。

    文本相似度计算可以根据不同的分类标准进行分类。首先基于统计的方法分类,这种方法主要

    关注文本中词语的出现频率和分布,通过统计信息来计算文本之间的相似度。常见的基于统计的方

    法有余弦相似度、Jaccard 相似度等。其次是基于语义的方法分类,这种方法试图理解文本的含义

    和上下文,通过比较文本的语义信息来计算相似度。常见的基于语义的方法有基于词向量的方法

    (如 word2Vec、GloVe 等)和基于主题模型的方法(如 LdA、pLSA 等)。最后是基于机器学习的方

    法分类,这种方法利用机器学习算法来训练模型,通过模型来预测文本之间的相似度。常见的基于

    机器学习的方法有支持向量机(SVm)、神经网络等。

    目前,在国内外,文本相似度计算已经取得了丰富的成果。国内方面,清华大学等机构的研究

    者提出了基于深度学习的文本相似度计算方法,利用神经网络模型来捕捉文本的深层语义信息,实

    现了较高的相似度计算精度。江苏师范大学的研究者提出了利用《新华字典》构建向量空间来做中

    文文本语义相似度分析的方法,该方法在中文文本相似度计算方面取得了显着的效果。放眼国外,

    Google 的研究者提出了 word2Vec 算法,该算法将词语表示为高维向量空间中的点,通过计算点之

    间的距离来衡量词语之间的相似度。word2Vec 算法在文本相似度计算领域具有广泛的影响。斯坦

    福大学等机构的研究者提出了 bERt 模型,该模型通过大量的无监督学习来捕捉文本的上下文信

    息,可以实现
新书推荐: 神之戒 都市霸途 Clone心影 九仙灵宝图 宝可梦普及,从贩卖顽皮熊猫开始 欢迎玩家进入极限轮回 穿成极品恶媳,种田致富娇养探花 名柯:我是赤井秀一的白月光 早知道系统能挣钱,还下乡干啥? 斩神:十二时辰所代表不同的能力